
Creating a Pac Man Game
Adapted from Basic Projects: Game Maker by David Waller

The Design

Before programming any game, all of the objects, events and actions should be planned and designed. The chart below
lists the plan for Pacman.

Object Events Actions
Pacman Right cursor pressed - Pacman moves right

- Sprite changed to SPR_PacmanRight
Left cursor pressed - Pacman moves left

- Sprite changed to SPR_PacmanLeft
Up cursor key pressed - Pacman moves up

- Sprite changed to SPR_PacmanUp
Down cursor pressed - Pacman moves down

- Sprite changed to SPR_PacmanDown
Creation - Score set to zero

- Score displayed

- Lives set to three

- Lives displayed
Collision with wall Movement Stopped
Collision with food - Score increases by 1

- Score variable tested

- If score equals 25, display a message and move to next
level

- Food is destroyed
Collision with monster - Lives decreased by 1

- Lives variable toted

- If lives equals zero then display a message and restart
Monsters 1 to 5 Creation - Start moving in a vertical or horizontal direction

Collision with Pacman - Direction reversed
Collision with wall - Direction reversed (without this reversal, collision

would continue and take all of the players lives with just
one collision)

Food None None
Wall None None

Most of the concepts needed to create Pacman were previously covered in part one and two of Breakout so the steps for
this game will not be as descriptive as the first two.

Let’s get to it!

1. Launch Game Maker Lite (NOT Studio)

2. Create a new game. Choose File>New

3. Create sprites for the game. Load these sprites and name them as listed.

Graphics to load Name of Sprite
Food SPR_Food
Wall SPR_Wall
Red Monster SPR_MonsterRed
Orange Monster SPR_MonsterOrange
Green Monster SPR_MonsterGreen
Blue Monster SPR_MonsterBlue
Purple Monster SPR_MonsterPurple
Pacman Down SPR_PacmanDown
Pacman Up SPR_PacmanUp
Pacman Right SPR_PacmanRight
Pacman Left SPR_PacmanLeft

These sprites can be found on the out folder of the shared drive. HSTechC>Peri-
od>Out>Pacman. To create a new sprite, click on the red pacman icon. For the
SPR_Food, check the center icon.

4. With all 11 sprites loaded, it’s time to create the objects. Create sprites and name them as listed below.

Object Name of Sprite
OBJ_Food SPR_Food
OBJ_Wall SPR_Wall
OBJ_Red Monster SPR_MonsterRed
OBJ_Orange Monster SPR_MonsterOrange
OBJ_Green Monster SPR_MonsterGreen
OBJ_Blue Monster SPR_MonsterBlue
OBJ_Purple Monster SPR_MonsterPurple
OBJ_Pacman SPR_PacmanRight

To create a new object, click on the blue ball icon. Remember to
make each monster, the wall, and Pacman solid.

5. With the objects now made, create a new room (click
on the icon represented by a white box with the blue

bar at the top of it). Most of the sprites in this game a 32 pixels,
so change the x and y grid to 32 if it isn’t already at 32.

6. Change the ‘Object to Add’ to OBJ_Wall and create wall

around and in the room to create a maze.

7. Now, change the “Object to Add’ to OBJ_Food and place 30
instances of food in the room. Beating the first level of Pacman
will require 25 points, so place 30 instances of food at various

locations within the room.

8. Next, arrange the monster as show in the example. The
placement of the monsters is important. The red, orange and
blue monsters are set to move horizontally and the purple and
green monsters will move vertically. These actions will have to
be programmed.

9. Now place one Pacman object in the bottom left corner of
the room. With Pacman added, the room is arranged and com-

plete. Click on the green check in the top left corner to save the changes and exit the room
properties dialogue box.

10. The game needs three collisions between OBJ_Pacman: one with the wall, one with the food and
one with the monsters. Each of these collisions needs a sound. Load an

appropriate sound for each. To load a sound, click on the load sound icon (the speaker) in the options
bar. Remember to check the preload sound icon for each sound.

11. Next the actions for the game need to
be programmed. Monsters, once created,
need to start moving in either a horizontal
or vertical direction. When the monster
collides with the wall, it should begin
moving in the opposite direction. When a
monster collides with Pacman it must re-
verse its direction (otherwise it will take all
the lives immediately). Remember that the
red, orange and blue monsters must move horizontally and the
purple and green monsters will move vertically.

12. Double click on the OBJ_MonserGreen to open its proper-
ties. Click the Add Event button and choose Create. Next, drag

the move fixed icon (top left icon in the move tab) into the actions area. The green monster should move down when the
game starts, so when the new dialogue box appears, select the down arrow. Before closing the dialogue box, change the
speed to 2, then click ok.

13.
When the monster hits the wall, it has to move the opposite direction. To program this action, choose the Add Event
button, click Collision, and when the next dialogue box appears choose OBJ_Wall. While still in the move tab, drag the
reverse vertical icon into the actions area. A dialogue box will pop up, here, check to see if self is selected and if it is,
choose ok.

14. When Pacman collides with the monster, the same action

needs to occur. While still in the OBJ_MonsterGreen
properties box (if not, double click on OBJ_Monster-
Green), click on the Add Event button, choose collision,
and then pick Pacman. Drag in the Reverse Vertical
icon, check self and click ok. Click ok to close the OBJ_Monster-
Green Dialogue box.

15. Save the game and click the Run in Debug Mode icon (the
red play button) to test it. Does the monster reverse its direc-
tion when it collides with Pacman and the wall? If so, OBJ_
MonsterGreen is fully programmed.

16. Looking at the chart of actions, the OBJ_MonsterPurple needs to perform the same tasks: Move down when the
game starts, and reverse its course when it collides with the wall and/or Pacman. The same actions as performed for the
OBJ_MonsterGreen could be performed, or OBJ_MonsterGreen

could be duplicated, and then the sprite for the
duplicate could be changed to
the SPR_MonsterPurple. This
second option will save some
time and work.

17. Right click on the OBJ_Mon-
sterPurple in the resource tree and choose delete. A new
dialogue box will appear asking if the object should be
deleted. Choose yes. Now, right click on the OBJ_Monster-

Green and click duplicate. A copy of the monster will be made
and it’s properties window will appear. Change the name of the
copy to OBJ_MonsterPurple and the sprite to SPR_MonsterPur-
ple, then click ok to close the properties window.

18. From the resource tree along the left, open the room. The
purple monster disappeared from the top right corner of the
room when it was originally deleted. It will have to be added
to the room again. Change the object to add to OBJ_Monster-
Purple and click in the top right corner of the room to add the
purple monster to the room. With the monster now in place,

click the green check in the top left corner of the room properties box to close it.

19. Save the game and clcik the Run in Debug mode icon to
make sure the purple monster functions properly. just like
OBJ_MonsterGreen, it should start the game by moving down
and reverse its direction when it collides with the wall or pac-
man. Two monsters down, three more to go.

20. Double click on OBJ_MonsterOrange in the resource tree.
Click on the Add Event button and choose Create. Next, drag
in the Move Fixed icon. On the new dialogue box, clcik the left
arrow an set the speed at 2. Choose ok to close the dialogue

box. Next click Add Event>Collision>Obj_Wall. Drag in the Reverse Horizontal icon and click ok. Again click Add Event>Col-
lision>OBJ_Pacman. Drag in the Reverse Horizontal icon and click ok. To close the OBJ_MonsterOrange properties box,
click ok once more.

21. With one of the horizontal moving monsters programmed,
it can be duplicated to save time for the other two. Start by
right clicking on OBJ_MonsterRed and choosing delete. Click
yes to permanently delete the object. Then do the same thing
for OBJ_MonsterBlue. Duplicate OBJ_MonsterOrange by right
clicking on it in the resource tree and choosing duplicate. The
property box will appear, here change the name to OBJ_Mon-
sterBlue and change the sprite to SPR_MonsterBlue. Click ok to
close the properties window. Duplicate OBJ_Monster Orange
again and this time change the object name to OBJ_Mon-
sterRed and the sprite to SPR_MonsterRed. Click ok to close its
properties window.

22.
Double click on the room in the resource tree. Just like the
purple monster earlier, the blue and red monsters disappeared
when the objects were deleted. Change the ‘Object to add’
to OBJ_MonsterBlue and click in the location the same loca-
tion that he was in earlier. Then change the ‘Object to add’ to
OBJ_MonsterRed and add him to the room too. Click the green
check in the top right corner to close the room properties.

23. Save the game and Run in Debug Mode once again to test
the movement and collisions of the orange, blue and red mon-
sters. They should start the game by moving to the left, and
change direction when they collide with the wall. Now all of
the monsters should be programmed and work correctly.

24. Now OBJ_Pacman needs to be programmed. Unfortunately Pacman is the most involved to program. These are the
events and actions that need to be programmed:

Event Action
Create Event - Set score to zero

- Set Lives to zero

- Display Score & Lives
Keyboard Event - Move in direction of cursor key and change sprite to SPR_Pac-

manDown, SPR_PacmanUp, SPR_PacmanLeft, SPR_Pacman-
Right

Collision with Wall - OBJ_Pacman must stop

- Play SND_WallCollision
Collision with OBJ_Food - Play SND_FoodCollision

- Increase Score by 1

- Test variable score

- If Score = 25 then display message & move to the next room

Collision with OBJ_Monster - Play SND_MonsterCollision

- Decrease lives by 1

- Test variable lives

 - If Lives = 0 then display message & restart game

25. Double click on OBJ_Pacman in the resource tree on the left to open its properties. When the game starts, OBJ_Pac-
man must be created, the score set to zero and the lives set at 3. The score and lives must be displayed too. Click on the
Add Event button and choose create. Click on the score tab along the right and drag in the Set Score icon. On the dia-
logue box, set the score to zero and click ok. Next drag in the Set Lives icon and set the new lives to 3. Click ok. Drag in
the Score Caption icon to the actions area. Changes Show Lives and Show Score to Show and click ok. These actions set
up the game, but now the movements must be programmed.

26. With the OBJ_Pacman properties

still open (if not, double click on OBJ_Pacman) click AddEvent>Keyboard><Right>. When the right keyboard button is
press, the sprite should change to SPR_PacmanRight so that pacman is facing the direction he is moving in and Pacman
need to move at a speed of 3. Click on the move tab along the right side and drag the Move Fixed icon into the actions

area. On the ew dialogue box, click on the right arrow and
set the speed to 3. Then click ok. The movement is set, but
the sprite still needs to change so choose the main1 tab and
drag the Change Sprite icon into the actions area. On the new
dialogue box, change the speed to 3and the sprite to SPR_Pac-
manRight. Click ok to close the dialogue box.

27. Repeat step 26 for a the left, up, and down arrows. Each
time, change the sprite to the corresponding pacman (for the
left arrow, SPR_PacmanLeft) and set the speed at 3. There
should be a create event, <Left>, <Right>, <Up>, and <Down>
event.

28. When any arrow key is released, pacman needs to stop
moving. With the OBJ_Pacman properties window still open (if not, double clcik on OBJ_Pacman in the resource tree).
Click on the Add Event button>Key Release><Any Key>. Click on the move tab at the right side and drag the Speed
Horizontal icon into the actions area. In the dialogue box, change the speed to 0 and click ok. Do the same thing with
the Speed Vertical icon. That should do it for OBJ_Pacman’s movements. Click ok to close the OBJ_Pacman properties
window.

29. Save the game and test it by clicking on the Run in Debug Mode icon. Does pacman move in each of the directions?
Does the sprite change each time so that pacman is facing the direction he is moving? Does he stop moving when a key is
released?

30. So pacman and the ghost should both move correctly, but the collisions aren’t programmed yet. Pacman can collide
with the monsters, food, and the wall. Each collision will trigger a sound to play and possibly the score(if it’s a collision

with food) or lives (if it’s a collision with a monster) to change.

31. Double click on OBJ_Pacman to open his properties. Click Add Event>Collision>OBJ_Wall. The movement (both hori-
zontal and vertical) must be set to zero when pacman collides with the wall. Drag the Speed Horizontal icon (in the move
tab) to the actions area and set the speed to zero. Do the same for the Speed Vertical icon. This will make pacman stop
moving upon a collision with the wall. The collision with the wall still needs a sound. Click on the main 1 tab and drag in
the Play Sound icon . On the new dialogue box, change the sound to SND_WallCollision and click ok to close the window.
The wall collision is now complete.

32. Next, create the food collision. When pacman collides with OBJ_Food, that particular instance of food needs to dis-
appear (or be destroyed), the score should increase by 1, be tested to see if the player has reached 25 and if they have, a
message should be shown and the next room should load.

33. While still in OBJ_Pacman’s properties, click the Add Event button>Colli-

sion>OBJ_Food. Along the right side of the window, choose the main1 tab and
click and drag in the Destroy Instance icon (looks like a recycle bin). When the
new dialogue window open, click other so that the destruction applies to the
food and to pacman. Then click ok to close the dialogue box. The score still
needs to change, so click on the score tab along the right and drag in the Set
Score icon (first square with three yellow circles in it). On the new dialogue box,
enter 1 as the new score and be sure to check the Relative box so that it adds 1
each time and doesn’t just reset the score to 1 and click ok. The program also
needs to check the score to see if it is 25, so with the score tab still open, drag
the Test Score icon (looks like a stop sign with three yellow circles in it) into the
actions area. In the new dialogue box, set the value to 25 and operation as equal to and then click ok.

34. After the If Statement that was just added, there needs to be an action for if the score is 25. This set of actions will
need to be grouped in a block so they are performed together if the score is 25. Start this set of actions by clicking on the
control tab along the right side of the properties window. Drag the Start Block icon (looks like a triangle pointing up) into
the actions area directly below Test Score. Now click the main2 tab and drag Display Message into the actions area. Type

some sort of message telling the player that they have won into the new dialogue box and click ok to close it. Next click
on the main1 tab along the right side of the properties window and drag in the Next Room icon (has a green arrow point
to the right in front of a blue and white box). Choose an effect for how the new room will appear and select ok. To end
this sequence, click on the control tab and drag in the End Block (triangle pointing down). The final thing that has to be

added to the collision with food is sound. The sound has already been loaded,
so it just has to be programmed to play when the two collide. Click on the main
1 tab and drag the Play Sound (speaker inside a square) icon into the actions
area. When the new dialogue box appears, change the sound to SND_FoodColli-
sion. Leave loop false and click ok. That should complete the food collision. Click
ok to close the OBJ_Pacman properties box.

35. Save the game and click the Run Game in Debug Mode to test the program-
ming. When pacman collides with food Is the instance of food destroyed? Does
the score increase by 1? Is there a sound that plays when the collision occurs?
Hopefully all of these actions are working properly!

36. As seen when testing the game, pacman can earn points but he can’t lose

lives from colliding with any of the monsters. This will be the
next step. Double click on OBJ_Pacman to open the objects
properties. Choose Add Event>Collison>OBJ_MonsterGreen.
Click the main1 tab along the right side of the properties
window and drag in the Play Sound icon. On the new dialogue
box, change the sound to SND_MonsterCollision, leave the
loop on false and click ok. Now choose the score tab and
drag the Set lives (red heart inside a square) icon into the
actions area. the new lives should be -1 and relative should
be checked so that each time one life is lost. Click ok to close
the dialogue box. The number of lives needs to be checked
to make sure the game hasn’t run out of lives yet, so drag in
the Test Lives (red heart inside a so sign) icon into the actions
area. On the new dialogue box, the value should be set to zero
and the operation as equal to. Once these are set, click ok to
close the dialogue box.

37. Just like the score earlier, a group of actions will need to be performed after running the test. If the lives equal zero, a
message will have to appear to tell the player they have lost and the game will have to restart. These action will have to
be placed in a block. Click on the control tab along the right and drag the Start Block icon into the actions area. Now click

on the main2 tab and drag the Display Message icon into the
actions area. Type some sort of message to the player to let
them know they have lost and then click ok. Drag in the Re-
start Game (red power button) icon into the actions area. That
is it for this block, so click on the control tab and add the End

Block icon to the actions area
to end the block. That ends the
collision with the green mon-
ster.

38. Rather than programming
this collision event for each
of the other four monster it
would be easier just to du-
plicate this event and add it
to each monster. How? With
the OBJ_Pacman properties
window still open, right click on
the Collision event with object
OBJ_MonsterGreen event
and choose duplicate. Click
Collision on the Choose Event
to Add dialogue box and then
as the new pull down menu
appears, select OBJ_Monster-

Purple. This added all of the actions from the collision with
the green monster to a new event on the purple monster... it
saved quite a bit of work!

39. Repeat step 38 for OBJ_MonsterOrange, OBJ_MonsterRed,
and OBJ_MonsterBlue. When finished, click ok to close the
OBJ_Pacman properties.

40. Save the game and run it in debug mode to see if the colli-
sions between pacman and the monsters work.

41. Almost there... the game plays! Lives can be lost, points
can be earned when food is eaten, but there is not a second
level to advance to. This is the final addition to the game. In the rooms folder in the resource tree at the left, right click
on room0. Choose duplicate to copy the room.

42. Next all of the objects from room 1 have to be duplicated. Right click on OBJ_Pacman in the resource tree and select
duplicate. Rename the object OBJ_Pacman2and then click ok. Do this for each of the monsters as well. When renaming

them, just add 2 (since they are in room 2) to the name.

43. Remove pacman and each monster from room 1 by
right clicking on each of the objects and choosing delete.
Replace the objects with their duplicate (OBJ_Monster-
Green replaced by OBJ_MonsterGreen2). When finished,
click on the green check on in the top left corner to close

he room properties.

44. The collision events will have to be edited too
because they reference objects in room0. Double
click on OBJ_Pacman2 in the resource tree. Right
click on Collision Event with OBJ_MonsterGreen
and select Change Event. Choose Collision Event
and OBJ_MonsterGreen2. Do the same thing for the
other four monsters collision events with pacman.
When finished, click ok to close the OBJ_Pacman
properties window.

45. Now the collision events for the monster have to
be changed to match the new pacman. Double click
on OBJ_MonsterGreen2. Right click on the Collision
Event with OBJ_Pacman and select Change Event.
Choose Collision as the type of event and then from
the popup menu, choose OBJ_Pacman2. Click ok to
close the properties window. Repeat this project for
the other 4 monsters.

46. Now change the
room a little bit to make it more difficult than the first room. Take away some food so
there are less instances of food to collect. Place food in more difficult to reach locations.
Add more monsters to the room. Change the layout of the walls to make it harder to nav-
igate. Make the monsters move faster. Just make level 2 more challenging. In the example
here, the
blue and
red monster
are faster
in room1,
there is less
food avail-
able to eat,
and there
are a few
additional
monster in
the room.

47. Save the
game. Click
the Run

Game in Debug Mode icon and play all the
way through the game. Does it work? Is the
second room challenging enough?

48. When playing the game through, upon

beating the second room, GameMaker encounters a fatal error. There isn’t a message telling the player the game is over
and it may even try to go to another level (but the level doesn’t exist).

49. Double click on OBJ_Pacman2. Click on Collision Event with OBJ_Food. Right click on the Next Room icon and choose
delete. From the main2 tab, drag in the End Game icon to replace the Next Room icon. Double click on the Display Mes-
sage icon and change the player to a message that tells the player they have won. Click ok to close the properties win-
dow.

50. Save the game and run it again in debug mode to test how it works. Are there any issues? If not, choose File>Create
Executable. Name the file and click save. It is now playable on any computer as an .exe file. That’s it! The game is made
and exported to be played, so play a bit and enjoy it!

